LEARNING TO RECOGNIZE MISSING E-MAIL ATTACHMENTS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Recognize Missing E-Mail Attachments

Forgotten attachments of e-mail message are a common and obnoxious problem. Several E-mail readers provide plugins that attempt to tackle this problem by trying to guess whether a message needs an attachment and warn the user in case s/he does not attach a file to such a message. However, these approaches essentially only work with a fixed list of keywords, which trigger such a warning whenever...

متن کامل

Learning to classify e-mail

In this paper we study supervised and semi-supervised classification of e-mails. We consider two tasks: filing e-mails into folders and spam e-mail filtering. Firstly, in a supervised learning setting, we investigate the use of random forest for automatic e-mail filing into folders and spam e-mail filtering. We show that random forest is a good choice for these tasks as it runs fast on large an...

متن کامل

Learning to Filter Unsolicited Commercial E-Mail

We present a thorough investigation on using machine learning to construct effective personalized anti-spam filters. The investigation includes four learning algorithms, Naive Bayes, Flexible Bayes, LogitBoost, and Support Vector Machines, and four datasets, constructed from the mailboxes of different users. We discuss the model and search biases of the learning algorithms, along with worst-cas...

متن کامل

Incremental Learning for Interactive E-Mail Filtering

AbstrAct In this paper, we propose a framework namely, Prediction-Learning-Distillation (PLD) for interactive document classification and distilling the misclassified documents. Whenever a user points out misclas-sified documents, the PLD learns from the mistakes and identifies the same mistakes from all other classified documents. The PLD then enforces this learning for future classifications....

متن کامل

Learning Rules that Classify E-Mail

Two methods for learning text classifiers are compared on classification problems that might arise in filtering and filing personM e-mail messages: a "traxiitionM IR" method based on TF-IDF weighting, and a new method for learning sets of "keyword-spotting rules" based on the RIPPER rule learning algorithm. It is demonstrated that both methods obtain significant generalizations from a small num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Artificial Intelligence

سال: 2010

ISSN: 0883-9514,1087-6545

DOI: 10.1080/08839514.2010.481499